
Risk Scores, Label Bias,
and Everything but the Kitchen Sink

Michael Zanger-Tishler
Harvard University

Julian Nyarko
Stanford University

Sharad Goel
Harvard University

In designing risk assessment algorithms, many scholars promote a “kitchen sink” ap-
proach that utilizes all available features as inputs. The use of these models rests on
the assumption that adding information either increases predictive quality or—if the
information is not statistically relevant—is ignored by the model. We show, however,
that this rationale often fails when algorithms are trained to predict a proxy of the
true outcome, as is the case in most contexts where predictive algorithms are deployed.
In the presence of such “label bias”, we show that one should exclude a feature if its
correlation with the proxy and its correlation with the true label have opposite signs,
conditional on the other features in the model. This criterion is often satisfied when
a feature is weakly correlated with the true label, and, additionally, that feature and
the true label are both direct causes of the remaining features. For example, due to
patterns of police deployment, criminal behavior and geography may be weakly cor-
related and direct causes of one’s criminal record, suggesting it can be problematic to
include geography in criminal risk assessments trained to predict arrest as a proxy for
behavior.

1 Introduction

Risk assessments are central to the allocation of resources and the imposition of sanctions. In medicine,
estimated health risks guide treatment decisions (1); in banking, default risk determines whether an
applicant should be granted a loan (2); in education, the risk of non-completion is an important factor
for college admissions decisions (3); and in criminal justice, recidivism risk helps judges decide whether
to detain or release a defendant while their cases proceed (4–6). Increasingly, the risk of such adverse
events is estimated with the help of statistical algorithms. In training these algorithms, there is a widely
shared view that the investigator should use as much data as is available to them (7–9). This view rests on
the intuition that more information leads to (weakly) better predictions: If the added data are informative
in estimating risk, then they will improve the performance of the algorithm, and if the added data do
not contain a helpful signal, then they will be discarded without hurting performance. Proponents of
this view stress that feature importance in the predictive context neither requires nor implies a causal
link between algorithmic inputs and predicted outcomes (8). Absent the constraints of rigorous causal
identification, it is argued that investigators can remain entirely atheoretical and simply hand all available
data over to the predictive algorithm.



In this paper, we show how “label bias”, present in virtually all real-world scenarios in which algo-
rithms are deployed today, can invalidate this common rationale. Label bias occurs when the outcome of
interest is not observed directly, but is instead observed with measurement error. For instance, although
criminal risk assessment tools seek to estimate the risk of future criminal behavior, we typically only
observe whether individuals are arrested or convicted of a crime. Similarly, tools to estimate health risk
often seek to divert resources to the patients with the most significant medical needs, but our observations
are often limited to medical expenditures. The inclusion of additional features will in general improve
an algorithm’s prediction of the proxy label (e.g., arrest or medical expenditures), but in the presence of
label bias, the additional information can decrease the quality of predictions for the true label (e.g, crim-
inal behavior or medical need). Below, we formally demonstrate and empirically illustrate conditions
under which the inclusion of additional features hurts the predictive performance on the true outcome of
interest. Because researchers rarely have access to the true label, whether or not to include a particular
feature often rests on unverifiable assumptions about the relationships that gave rise to the proxy label.
The findings highlight that most predictive contexts require investigators to spend significant time and
care in developing a theoretical model of the underlying data generating process, thus removing one of
the most important differentiators between prediction and causal inference.

Our study contributes to a burgeoning literature examining the use of algorithmic risk prediction in
a variety of domains. In health care contexts, algorithmic risk assessments are used to choose who will
be screened for diseases such as diabetes (10) and to decide who will receive kidney transplants (11).
Hospitals use risk assessment tools to decide which high-needs patients should be given additional re-
sources (12). Banks often use algorithmic predictions to determine individual risk of defaulting on a
future loan (2), and to determine who might be involved in money laundering operations (13). These
tools also arise frequently in the context of the criminal justice system, where agencies utilize algorithms
to decide how to distribute police resources (14, 15) and to help determine incarceration and sentencing
decisions (16–18). Corporations often use algorithms to inform decisions about who receives infor-
mation about housing advertisements (19), employment opportunities (20), and other subjects. Child
services agencies use algorithms to estimate the risk of child abuse or other negative events (21, 22),
and local governments use algorithms to decide the order in which applicants will receive building per-
mits (23). Finally, school districts are increasingly using algorithms to assign students to schools (24)
and to determine which students are more likely to lag behind in their learning (25).

In addition, our analysis builds on and contributes to a substantial body of literature examining the
impact of label bias in statistical analyses. Prior work in the social sciences has long focused on the
importance of measurement error for causal studies. Within this literature, a main focus has tradition-
ally been on examining the importance of measurement error in the independent variable, which can, at
best, attenuate the causal estimates (26, pp. 320–323), and at worst, bias the coefficients in ways that
are difficult to predict (27). Less attention has been given to label bias (i.e., measurement error in the
dependent variable), perhaps because it is often assumed that proxy labels differ from the true labels
by random noise, in which case one can still obtain unbiased causal estimates (26, pp. 318–320). Ex-
isting research, however, suggests that there is a non-random relationship between the true and proxy
labels across a variety of contexts, such as in the case of arrest and offending (28). More recent con-
tributions have considered the impact of such systematic errors in the labels. For example, Knox et
al. (29) examine the potential for biases to arise in causal estimates when latent concepts that cannot
be directly measured—like political “ideology” and “democracy”—are approximated by proxy variables
constructed from statistical models. Complementary work in computer science has examined the impact
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of label bias in a predictive setting. For instance, although predictive models may perform well on the
proxy label, research has shown they are not guaranteed to be accurate on the true label if the measure-
ment error between the true and proxy label is non-random (30). Similarly, label bias can also reduce the
fairness of these algorithms on the true label (31). When feasible, training predictions on the true label
rather than a proxy has been shown to reduce racial inequalities in algorithmic prediction and increase
accuracy (12, 32, 33).

We build on these contributions by explicitly examining how the performance decrease from label
bias interacts with the inclusion of additional predictors into the model. To establish our results, we
begin, in Section 2, by deriving analytic conditions for when excluding factors in a model trained to pre-
dict a proxy label is guaranteed to improve predictions of the true outcome of interest. We demonstrate
and build intuition for these analytic results using a stylized example of estimating recidivism risk in
the presence of label bias, where reoffense is the true label of interest and rearrest is the observed proxy.
Then, in Section 3, we turn to two case studies. First, we consider partially synthetic recidivism data with
real rearrest outcomes (the proxy label) and simulated reoffense outcomes (the true label). This setting
resembles one that many researchers face in practice, where data on the true label are often prohibitively
difficult or impossible to obtain. We show how different assumptions about how the true label relates to
the observed proxy affect decisions about what predictors to include in the risk assessment model. Sec-
ond, we consider a dataset from the health sciences. In targeting patients for high-risk care management
programs, we rely on data by Obermeyer et al. (12) which contain, among other items, information on
both the true label (healthcare need) and a proxy (healthcare spending). Using this dataset, we estimate
the welfare costs of using a kitchen-sink predictive model instead of more judiciously selecting a model
that accounts for label bias. We conclude in Section 4 with a discussion of our findings and point out
potential paths forward.

2 A Statistical Condition for Excluding Features

To build intuition for how label bias impacts the choice of features in predictive models, we start with
a simplified motivating example from the criminal justice context. In the United States, after an arrest,
a judge will often decide whether or not to detain the arrested individual based on their estimated risk
to public safety. In practice, this risk is commonly estimated using statistical risk assessments. The
underlying risk models are trained using information about future arrests and convictions. However,
arrests and convictions are not direct measures of public safety risks. Instead, they merely act as proxies,
making these risk assessment tools susceptible to label bias.

In Figure 1, we sketch the data-generating process for a stylized, linear structural equation model
(SEM) (34) of arrests and behavior, where we treat arrests as the observed proxy for unobserved behav-
ior, our true outcome of interest. The model produces synthetic data on individual-level behavior (B0 and
B1) and arrest (A0 and A1) outcomes at two time periods (t = 0 and t = 1), as well as the neighborhood
(Z) in which the individual resides. Importantly, arrests depend both on behavior and on neighborhood,
reflecting the fact that people who engage in the same behavior may be arrested at different rates depend-
ing on where they live. For example, Beckett et al. (35) found that the geographic concentration of police
resources in Seattle led to higher arrest rates for Black individuals delivering drugs compared to white
individuals delivering drugs—where the true racial distribution of those delivering drugs was estimated
from survey data and ethnographic observations. Similarly, Cai et al. (36) found that the issuance of
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Figure 1: The data-generating process for our stylized example of criminal behavior (true label) and
arrest (proxy label), with observed variables highlighted in orange.

speeding tickets varied across neighborhoods even after adjusting for the true, underlying incidence of
speeding, as estimated by the movement of mobile phones.

In this SEM, all of the variables are normally distributed, with mean 0 and variance 1. We can thus
interpret their values as representing the extent to which individuals differ from the population averages.
In the case of neighborhood (Z), we can think of its value as denoting the level of police enforcement in
that area. Further details about the model are provided in the Appendix.

Using synthetic data generated with this SEM, we train a “complex”, kitchen-sink model to predict
arrests at time t = 1 (A1) based on arrests at time t = 0 (A0) and neighborhood (Z). The more
parsimonious, “simple” model bases its predictions only on arrests at time t = 0, omitting neighborhood.
We now examine how the performance of the complex and simple models vary for different values of
β, the parameter that describes the relationship between neighborhood and behavior, holding the other
parameters fixed.1 Across values of β, the left-hand panel of Figure 2 shows that the complex model
outperforms the simple model—in terms of root mean squared error (RMSE)—when evaluated on the
proxy label. As expected, including more information reduces error when evaluated on the label used
to train the models, a pattern that has traditionally motivated the inclusion of more features in predictive
models. However, moving to the right-hand panel of Figure 2, we see that the simple model outperforms
the complex model on the true label for some values of β. In particular, the simple model outperforms
the complex one for small values of β, corresponding to a weak relationship between neighborhood and
behavior.

Our SEM illustrates a scenario in which simple models outperform more complex models due to
1For this simulation, we set α = γ = δ = 0.4, though the general pattern is largely invariant to this choice, as we describe

in more detail below.
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Figure 2: Performance of simple and complex models trained to predict a proxy label, when evaluated
on the proxy label (left) and the true label (right) for a range of β values. Whereas the complex model
outperforms the simple model on the proxy label, the simple model outperforms the complex model on
the true label for certain values of β.

the presence of label bias. To understand this result, imagine two individuals, both of whom have the
same prior arrest record, but with only one of them living in a heavily policed neighborhood. Further
assume that where one lives has little impact on criminal behavior (corresponding to small β), but that
heavier policing increases the chance of being arrested for an offense. In this case, we can infer that the
individual living in the heavily policed neighborhood engaged in past criminal activity less frequently
than the individual living in the less heavily policed neighborhood. This is because fewer actual offenses
are required to build a given arrest record in areas of high enforcement. Extrapolating from their past
behavior, we would accordingly expect the individual in the heavily policed area to be less likely to
engage in future criminal behavior. Thus, using information about one’s neighborhood to predict future
arrests (the proxy label) correctly tells us that the individual living in the heavily policed neighborhood
is more likely to be rearrested, but it incorrectly suggests that individual is also more likely to engage in
future criminal behavior (the true label). So, when predicting arrests as a proxy for behavior, it is better
in this case to exclude information on one’s neighborhood.

The SEM depicts a specific data-generating process, but the phenomenon we identify is generaliz-
able. Theorem 1 and Corrolary 1 below establish formal conditions under which this pattern is guaranteed
to occur.

Theorem 1 Suppose Y and Y ′ are two arbitrary random variables, where Y is the “true” outcome of in-
terest and Y ′ is a proxy. For a random variable Z and a vector of random variables X = (X1, . . . , Xk),
consider the estimators

ŶX,Z = E[Y ′ | X,Z], and

ŶX = E[Y ′ | X],
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where ŶX,Z is the “complex” estimator that uses all available features, and ŶX is the “simple” estimator

that omits Z. If Cov
(
ŶX,Z , Y | X

)
≤ 0, then E

[(
ŶX − Y

)2
]
≤ E

[(
ŶX,Z − Y

)2
]

, meaning the

simple estimator weakly outperforms the complex estimator. Further, if E
[
Var

(
ŶX,Z | X

)]
> 0, then

the simple estimator strictly outperforms the complex estimator.

In the setting of Theorem 1, one seeks to estimate a true outcome of interest Y , and must choose
between two different estimators designed to predict the proxy label Y ′. The first, “complex” estimator
(ŶX,Z) uses both X and Z to predict Y ′, whereas the second (ŶX ) uses only X . The theorem shows
that if, conditional on X , the true label (Y ) is negatively correlated with the complex estimator (ŶX,Z),
then the simple model generally outperforms the complex estimator on the true outcome of interest.
If, alternatively, the true and proxy labels differ only by independent noise, then Proposition 1 in the
Appendix shows that including more information when predicting the proxy label will in general improve
predictive performance on the true label. Thus, in the absence of systematic measurement error, that
result confirms the conventional wisdom that more information is better .

When the complex estimator ŶX,Z is linear in Z, Corollary 1 establishes a simpler condition under
which performance increases by omitting information. Specifically, if, conditional on X , Z is positively
correlated with true label Y but negatively correlated with the proxy label Y ′ (or vice versa), then omit-
ting Z when predicting the proxy label will in general improve performance on the true outcome of
interest.

Corollary 1 In the setting of Theorem 1, suppose ŶX,Z is linear in Z, i.e., ŶX,Z = f(X)+ g(X) ·Z for
some functions f and g. If

sign (Cov (Y,Z | X)) = −sign
(
Cov

(
Y ′, Z | X

))
,

then E
[(

ŶX − Y
)2

]
≤ E

[(
ŶX,Z − Y

)2
]

. Further, if E
[
Var

(
ŶX,Z | X

)]
> 0, then the simple

estimator strictly outperforms the complex estimator.

The linearity assumption of Corollary 1 holds in a variety of settings. In particular, as described in the
Appendix, it holds when Y ′, X , and Z are jointly multivariate normal, as is the case in our SEM above.
To apply the corollary, one needs information on the correlations of Y and Z and of Y ′ and Z, conditional
on X . The former involves directly observed quantities—the proxy label and the potential predictors—
and so, in practice, can be computed from data. For our stylized SEM, we show in the Appendix that
this correlation is positive for all (non-degenerate) parameter choices, meaning that neighborhood (Z) is
positively correlated with future arrests (A1), conditional on past arrests (A0). The second conditional
correlation we must consider when applying Corollary 1—the correlation between Y and Z, conditional
on X—is not typically directly observed, as it depends on the true label Y . Understanding its sign thus
involves assumptions about how the true label is related to the predictors Z and X . For our SEM, we
show in the Appendix that this correlation is negative for small values of β. That is, when β is small,
neighborhood (Z) and future behavior (B1) are negatively correlated conditional on past arrests (A0).
Intuitively, this is because A0 is a collider, and so when we fix its value, increasing Z requires decreasing
B0, which in turn decreases B1. Thus, for small values of β, omitting neighborhood when predicting the
proxy label improves performance on the true label, as shown in Figure 3.
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3 Case Studies

To better understand the practical implications of our results, we now turn to two real-world datasets.
The first allows us to further consider criminal risk assessments, adding additional realism to our stylized
SEM above; the second dataset comes from the medical domain, where the goal of the risk assessment
we consider is to identify patients with complex healthcare needs.

3.1 Criminal risk assessments

Continuing with our running example studying arrest and criminal behavior, we use data on individuals
from a major U.S. county who were arrested for a felony offense between 2013 and 2019. For simplicity,
we limit the sample to the 25,918 cases where the individuals’ race was identified as either Black or
non-Hispanic white. The dataset includes further details on each case, including information on the
charges, the location, date and time of the incident, and the criminal history of the arrested individual. In
addition, the dataset contains information on future rearrests, which we use as our proxy label for future
offenses. Using these data, we fit simple and complex models trained on the proxy label (future arrests).
We then examine model performance on the true label (future criminal offenses, which we simulate, as
described below, since they are not directly observed). Our “complex” model includes three features: the
age of the arrested individual; the number of times the individual was previously arrested; and whether or
not the arrest occurred in a “high policing” area (i.e., a police district accounting for disproportionately
high numbers of arrests). Our “simple” model includes age and number of past arrests, but not location
information—similar to many commonly used criminal risk assessment tools.

This example mirrors many instances of label bias in the real world, as it is difficult, and perhaps im-
possible, to directly estimate the risk of “true” offending (37). This is in part because criminal behavior
that is not reported to the police will not be included in administrative records. We thus simulate of-
fending outcomes under a range of data-generating processes, and then examine how assumptions about
criminal behavior affect model performance after including or omitting location information. In particu-
lar, for a fixed value of ρ ∈ R, describing the impact of neighborhood on criminal behavior, we assume
that each individual in our dataset commits a future offense with the following probability:

Pr(B1 = 1) = logit−1

(
−1− 1

100
Xage +

1

2
A0 + ρZ

)
,

where B1 indicates future criminal behavior (our true label), Xage is the arrested individual’s age, A0 is
the number of times they were previously arrested, and Z indicates whether the arrest took place in a
high-policing area. The intercept and the coefficients for A0 and Xage were selected to approximate the
coefficients from a regression of future arrests on age and past arrests in our data.

Based on the data-generating process described above, we now evaluate the ability of our simple and
complex risk assessment models to predict the synthetic true label, future criminal behavior. We evaluate
model performance in terms of AUC, as the outcome is binary.2 Figure 3 shows that the simple model

2AUC is a common measure of performance in the machine learning community when considering binary outcomes. Given
a random individual who engaged in future criminal activity and a random individual who did not, the AUC of a risk assessment
model is the probability that the model correctly identifies the individual in the pair who engaged in criminal activity. Our formal
theoretical results are stated in terms of RMSE, but this example and our subsequent example show that the general pattern and
intuition extend to other popular evaluation metrics.
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Figure 3: Performance of simple (age and past arrests) and complex (age, past arrests, and neighbor-
hood) models trained to predict future arrests (the proxy label), evaluated on future criminal behavior
(the true label). Because the future criminal behavior is not directly observable, the plot shows results
for synthetic outcomes generated under a range of data-generating processes parameterized by ρ, the
hypothesized relationship between neighborhood and future criminal behavior.

outperforms the complex model on the true label when ρ is negative, and the complex model outperforms
the simple model when ρ is sufficiently positive. Given two arrested individuals who are the same age and
have the same number of past arrests, negative values of ρ indicate that the individual who was arrested
in the high-policing area is the less likely of the pair to engage in future criminal behavior. That pattern
is akin to what we saw in our stylized SEM depicted in Figure 1. Accordingly, to the extent that one
believes the hypothesized data-generating process with negative ρ is a sufficiently accurate description of
criminal behavior, it is better to exclude neighborhood information when training risk assessment tools
on the proxy label, future arrests.

3.2 Identifying high-needs patients

We continue by applying our results to a well-known case of label bias in the literature, that of a commer-
cial risk assessment tool that health systems rely on to target patients for “high-risk care management”
programs (12). These programs seek to enroll patients with complex medical needs, and subsequently
provide them with a higher level of care. Because these programs are capacity constrained, the role of
statistical risk assessments in this case is to accurately identify patients who would benefit the most from
the additional care. In practice, though, the risk assessment algorithms are often designed to predict
future medical expenditures, a proxy for medical need as the true outcome of interest. Analyzing these
algorithms, Obermeyer et al. (12) conclude that, due to label bias, Black patients are less likely to be
enrolled in the program than white patients with the same level of medical need. This is because un-
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Figure 4: Enrollment of high needs patients (left) and demographic composition of enrolled patients
(right) under the simple and complex models for a range of program capacities.

equal access to healthcare means that white individuals are more likely to seek medical treatment—and
accordingly incur higher medical costs—than equally sick racial minorities.

Obermeyer et al. (12) highlight the importance of appropriately selecting the target of prediction,
and illustrate the accuracy and equity gains one can achieve by switching from predicting expenditures
to a more direct measure of medical need. Here we revisit the problem, and investigate how the choice
of risk factors used to identify patients impacts enrollment decisions. To do so, we start with the data
released by Obermeyer et al. (12), which include detailed information on patient demographics (sex,
race, and age), current and future health, and past and future medical expenditures.3 We then train
simple and complex models on the proxy label, future medical costs. Our complex model includes all
information available at the time of the enrollment decision (i.e., patient demographics, current health,
and past medical expenditures); our simple model includes only current health, excluding past medical
medical costs and demographic variables. In the end, the complex model includes 150 predictors, and
the simple model includes 128 predictors.

Finally, we evaluate both models on their ability to predict whether a patient, in the subsequent year,
is found to suffer from at least three chronic diseases—a measure of future health need identified by
Obermeyer et al. (12). The left-hand panel of Figure 4 shows the number of high-needs patients enrolled
under the simple and complex models at different enrollment capacities, where the patients with highest
estimated risk under the respective models are enrolled in the program. At each capacity level, the simple
model outperforms the complex model in identifying more high-needs patients. Additionally, as shown
in the right-hand panel of Figure 4, the simple model enrolls more Black patients than the complex
model at every capacity level. This pattern stems from the simple model prioritizing patients with high
expected medical needs over patients with high expected medical expenditures—the latter population

3Obermeyer et al. (12) released a synthetic dataset, with variables having the same conditional distributions as those in the
original dataset, using the synthpop package in R (the original data cannot be released in order to protect patient privacy).
The data are available at: https://gitlab.com/labsysmed/dissecting-bias).
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being disproportionately white. Thus, if one only has access to a proxy label, systematically excluding
predictors in a risk assessment tool can improve both the accuracy and equity of the instrument.

4 Conclusion

In building predictive models, the traditional guidance is to include all available information to max-
imize performance. But, as we have shown, a more judicious selection of features can lead to better
model performance in the presence of label bias. Because the true label of interest is often not readily
available, it raises the question of what examiners should and can do to mitigate the negative conse-
quences from taking a kitchen-sink approach to prediction. The examples we have discussed highlight
several approaches that vary in their appropriateness based on data availability and understanding of the
underlying data-generating process.

Most directly, Obermeyer et al. (12) illustrate how some instances of label bias can be addressed
simply by making a more concentrated effort to collect data on the true label of interest. If such an
effort is generally possible, but prohibitively costly, investigators should consider whether the true label
of interest can be obtained for a smaller subset of the population. This subset, even if it is not suffi-
ciently large to train models predicting the true label, might still be used to explore how the selection
of features affects model performance on the true label. If obtaining the true label is impossible, but
investigators have access to a wealth of other features, one may simulate the true label of interest. In
doing so, researchers should use their domain-specific knowledge to make reasonable assumptions about
the relationship between the true label of interest and the features in question. We illustrated this process
using felony offense data. Importantly, investigators need not constrain themselves to one particular rela-
tionship between the true label and the features, but can instead assess the sensitivity of feature selection
to label bias across a wide range of plausible assumptions. Finally, investigators can make additional
theoretical assumptions about the data-generating process in order to determine how label bias affects
the choice of risk factors in a specific application—as we did in our healthcare example. As shown in
that example, caution is particularly warranted for features that do not appear to be directly risk relevant.
These features often yield little improvement on the true outcome of interest, and raise the likelihood
that performance may decrease or that their inclusion may exacerbate disparities.

More generally, our findings suggest, in contrast to conventional wisdom, that one cannot entirely
divorce the predictive enterprise from theoretical considerations. Instead, a successful deployment of
predictive tools often rests on the plausibility of the assumptions about the underlying processes that give
rise to the observed data, highlighting the continued utility of domain-specific expertise in the predictive
context.
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A Proof of Theorem 1

For any random variable Ŷ ,

E
[(

Ŷ − Y
)2

]
= E

[
Y 2

]
+ E

[
Ŷ 2

]
− 2E

[
Y · Ŷ

]
,

and so,

E
[(

ŶX,Z − Y
)2

]
− E

[(
ŶX − Y

)2
]

=
(
E
[
Ŷ 2
X,Z

]
− E

[
Ŷ 2
X

])
+ 2

(
E
[
Y · ŶX

]
− E

[
Y · ŶX,K

] )
.

(1)

We will show, in turn, that each of the summands on right-hand side of Eq. (1) are non-negative—and
that the former is strictly positive when E

[
Var

(
ŶX,Z | X

)]
> 0. To start, we note that

E
[
Ŷ 2
X,Z | X

]
≥

(
E
[
ŶX,Z | X

])2

=
(
E
[
E[Y ′ | X,Z] | X

])2
=

(
E
[
Y ′ | X

])2
= Ŷ 2

X ,

(2)

where the first line follows from Jensen’s inequality, and the second equality follows from the law of
iterated expectations. As a result, by another application of the law of iterated expectations,

E
[
Ŷ 2
X,Z

]
= E

[
E
[
Ŷ 2
X,Z | X

]]
≥ E

[
Ŷ 2
X

]
,

(3)

showing that the first summand on right-hand side of Eq. (1) is non-negative. Further, the inequality in
Eq. (2) is strict on the set where Var

(
ŶX,Z | X

)
> 0. Consequently, if E

[
Var

(
ŶX,Z | X

)]
> 0, then

Var
(
ŶX,Z | X

)
> 0 on a set of positive measure, and so the inequality Eq. (3) is likewise strict.

Now, turning to the second summand, we have

E
[
Y · ŶX,Z

]
= E

[
E
[
Y · ŶX,Z | X

]]
≤ E

[
E
[
ŶX,Z | X

]
· E [Y | X]

]
= E

[
ŶX · E [Y | X]

]
= E

[
E
[
Y · ŶX | X

]]
= E

[
Y · ŶX

]
,
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where we repeatedly applied the law of iterated expectations, used the fact that ŶX is measurable with
respect to X to establish the penultimate equality, and the assumption of the theorem that Cov(ŶX,Z , Y |
X) ≤ 0 to establish the inequality. The above shows that the second summand on the right-hand side of
Eq. (1) is non-negative. Since we previously showed that the first summand is non-negative (and strictly
positive under the additional assumption), this proves the result.

□

B Proof of Corollary 1

By Theorem 1, it is sufficient to show that Cov(ŶX,Z , Y | X) ≤ 0. We start by noting that

Cov(ŶX,Z , Y | X) = Cov(f(X) + g(X) · Z, Y | X)

= g(X) · Cov(Y,Z | X),

and so, by the assumption of the theorem,

sign
(
Cov

(
ŶX,Z , Y | X

))
= −sign

(
g(X) · Cov

(
Y ′, Z | X

))
. (4)

Now, by repeatedly applying the law of iterated expectations, we have

E
[
Z · Y ′ | X

]
= E

[
E
[
Z · Y ′ | X,Z

]
| X

]
= E

[
Z · E

[
Y ′ | X,Z

]
| X

]
= E

[
Z · ŶX,Z | X

]
= f(X) · E[Z | X] + g(X) · E

[
Z2 | X

]
.

Similarly, we have

E[Y ′ | X] = E[E[Y ′ | X,Z] | X]

= E[ŶX,Z | X]

= f(X) + g(X) · E[Z | X].

Putting the above together, we get

Cov
(
Y ′, Z | X

)
= E

[
Z · Y ′ | X

]
− E[Y ′ | X] · E[Z | X]

= g(X)
(
E
[
Z2 | X

]
− E [Z | X]2

)
= g(X) ·Var(Z | X).

Finally, by Eq. (4),

sign
(
Cov

(
ŶX,Z , Y | X

))
= −sign

(
g(X)2 ·Var(Z | X)

)
≤ 0,

establishing the result.
□
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C Kitchen-Sink Models and Independent Noise

When the proxy label Y ′ and the true label Y simply differ by independent noise, then it is advantageous
to use all available information when constructing risk scores. The following proposition formalizes this
statement.

Proposition 1 In the setting of Theorem 1, suppose Y ′ = Y + S where S ⊥⊥ X,Z. Then

E
[(

ŶX,Z − Y
)2

]
≤ E

[(
ŶX − Y

)2
]
.

Proof. First note that

ŶX,Z = E[Y | X,Z] + E[S | X,Z]

= E[Y | X,Z] + E[S],

where the second equality uses the independence assumption. Similarly,

ŶX = E[Y | X] + E[S | X]

= E[Y | X] + E[S].

Now, using the notation YX,Z = E[Y | X,Z] and YX = E[Y | X], we have

E
[(

ŶX,Z − Y
)2

]
− E

[(
ŶX − Y

)2
]

= E
[(
YX,Z − Y + E[S]

)2]− E
[(
YX − Y + E[S]

)2]
= E

[(
YX,Z − Y

)2]− E
[(
YX − Y

)2]
+ 2E[S]

(
E[YX,Z − Y ]− E[YX − Y ]

)
= E

[(
YX,Z − Y

)2]− E
[(
YX − Y

)2]
= E

[
E
[(
YX,Z − Y

)2 | X,Z
]]

− E
[
E
[(
YX − Y

)2 | X,Z
]]

,

where the third equality follows from the fact that E[YX,Z ] = E[YX ] = E[Y ], and the last equality
follows from the law of iterated expectations. Finally, since

argmin
c

E
[(
c− Y

)2 | X,Z
]
= YX,Z ,

we have that
E
[(
YX,Z − Y

)2 | X,Z
]
− E

[(
YX − Y

)2 | X,Z
]
≤ 0,

establishing the result.
□
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D A Stylized Model of Arrest and Behavior

We formally describe and analyze the SEM depicted in Figure 1. Our model has three independent
exogenous variables UZ = N(0, σ2

Z), UA0 = N(0, σ2
A), and UA1 = N(0, σ2

A). We additionally have two
correlated exogenous variables UB0 = N(0, σ2

B) and UB1 = N(0, σ2
B) that are independent of the first

three, with Cov(UB0 , UB1) = δ ≥ 0. Now, for non-negative constants α, β, and γ, the key variables in
the model are generated by the following linear structural equations:

Z = UZ ,

B0 = βZ + UB0 ,

B1 = βZ + UB1 ,

A0 = αZ + γB0 + UA0 ,

A1 = αZ + γB1 + UA1 .

(5)

We set the variances of the exogenous variables (σ2
Z , σ2

A, and σ2
B) in a manner that ensures that the

remaining variables (Z, B0, B1, A0, and A1) are standardized, meaning they have mean 0 and variance
1—we show how to do this below. We can thus interpret their values as representing the extent to which
individuals differ from the population averages. In the case of neighborhood (Z), we can think of its
value as denoting the level of police enforcement in an area.

To start, we set σ2
Z = 1, which ensures Var(Z) = 1. Now, since Z ⊥⊥ UB0 , we have that Var(B0) =

β2 + σ2
B . Consequently, setting σ2

B = 1− β2 ensures that Var(B0) = 1 (and, similarly, that Var(B1) =
1). Finally, as above, Var(A0) = α2 + γ2 + σ2

A + 2αγCov(Z,B0). One especially nice aspect of linear
graphical models is that the covariance between any two variables can be immediately computed from
the edge weights via the the Wright rules (34, 38). Specifically, when the nodes are standardized to have
variance 1, then the covariance between any two variables in the graph is the sum, over all d-connected
paths between the variables, of the product of the edge weights along the path. A path is d-connected if
it does not pass through any colliders (i.e., nodes with head-to-head arrows along the path). To compute
Cov(Z,B0), observe that the only d-connected path between Z and B0 is the direct path from Z to B0,
having edge weight β. As a result, Cov(Z,B0) = β, meaning that setting σ2

A = 1 − α2 − γ2 − 2αβγ
ensures that A0 (and, analogously, A1) have unit variance. Recapping, we have

σ2
Z = 1,

σ2
B = 1− β2,

σ2
A = 1− α2 − γ2 − 2αβγ.

(6)

Our model is thus described by the four non-negative parameters α, β, γ, and δ, depicted as edge weights
in Figure 1, with the constraint that the quantities in Eq. (6) are non-negative. Those constraints in turn
imply that the parameters are each less than or equal to 1.

Our theoretical results in Theorem 1 and Corollary 1 require understanding the conditional distribu-
tions of model features. For multivariate normal random variables, these conditional distributions can
be computed analytically (39), allowing us to examine properties of our motivating SEM in more depth.
Specifically, suppose W is a k-dimensional multivariate normal random variable with mean µ and co-
variance Σ, which we partition into into its first q components and its remaining k − q components:
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W = [W1,W2]. Further suppose we accordingly partition µ and Σ into its components:

µ =

[
µ1

µ2

]
with sizes

[
q × 1

(k − q)× 1

]
,

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
with sizes

[
q × q q × (k − q)

(k − q)× q (k − q)× (k − q)

]
.

Then the distribution of W1 conditional on W2 is multivariate normal with mean

µ1 +Σ12Σ22
−1(W2 − µ2)

and covariance
Σ11 −Σ12Σ22

−1Σ21.

As a result, the linearity assumption of Corollary 1 is satisfied for multivariate normal random vari-
ables. In particular, in our motivating example, the conditional distribution of A1 given A0 and Z is
normal, with

E[A1 | A0, Z] =
[
σA1A0 σA1Z

] [ 1 σA0Z

σA0Z 1

]−1 [
A0

Z

]
=

1

1− σ2
A0Z

[
σA1A0 σA1Z

] [ 1 −σA0Z

−σA0Z 1

] [
A0

Z

]
=

σA1A0 − σA1Z · σA0Z

1− σ2
A0Z

A0 +
σA1Z − σA1A0 · σA0Z

1− σ2
A0Z

Z,

where the σ notation denotes the covariance of the indexed random variables.
Further, the conditional distribution of (A1, Z) given A0 is likewise multivariate normal, with co-

variance matrix[
1 σA1Z

σA1Z 1

]
−

[
σA1A0

σA0Z

] [
σA1A0 σA0Z

]
=

[
1 σA1Z

σA1Z 1

]
−
[

σ2
A1A0

σA1A0 · σA0Z

σA1A0 · σA0Z σ2
A0Z

]
=

[
1− σ2

A1A0
σA1Z − σA1A0 · σA0Z

σA1Z − σA1A0 · σA0Z 1− σ2
A0Z

]
.

Consequently,
Cov(A1, Z | A0) = σA1Z − σA1A0 · σA0Z , (7)

and, analogously, we have that

Cov(B1, Z | A0) = σB1Z − σB1A0 · σA0Z . (8)

As above, we can compute the covariances in Eqs. (7) and (8) via the Wright rules. For example, as
seen in Figure 1, there are two d-connected paths between Z and A0: the direct connection with edge
weight α; and the path through B0, with product of edge weights βγ. Consequently, Cov(Z,A0) =
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α+βγ. This procedure allows us to compute all of the terms appearing on the right-hand side of Eqs. (7)
and (8), yielding:

σA0Z = α+ βγ

σA1Z = α+ βγ

σB1Z = β

σA1A0 = α2 + 2αβγ + β2γ2 + γ2δ

σB1A0 = αβ + β2γ + γδ.

(9)

Leveraging the above, we now show that Cov(A1, Z | A0) ≥ 0, meaning that neighborhood is
positively correlated with future arrests, conditional on past arrests. To see this, first note that

δ = Cov(UB0 , UB1)

≤ σ2
B

= 1− β2,

and so β2 + δ ≤ 1. Now,

Cov(A1, Z | A0) = σA1Z − σA1A0 · σA0Z

= α+ βγ − (α+ βγ) · (α2 + 2αβγ + β2γ2 + γ2δ)

= (α+ βγ) · (1− α2 − 2αβγ − β2γ2 − γ2δ)

= (α+ βγ) · (1− α2 − 2αβγ − γ2(β2 + δ))

≥ (α+ βγ) · (1− α2 − 2αβγ − γ2)

= (α+ βγ) · σ2
A

≥ 0,

where the inequality follows from the fact that β2 + δ ≤ 1.
Next we consider Cov(B1, Z | A0), and note that

Cov(B1, Z | A0) = σB1Z − σB1A0 · σA0Z

= β − (αβ + β2γ + γδ) · (α+ βγ).

In particular, when β = 0, meaning that neighborhood does not impact behavior, then

Cov(B1, Z | A0) = −αγδ.

In other words, when neighborhood does not impact behavior (i.e., when β = 0), neighborhood is
negatively correlated with future behavior conditional on past arrests. (And, by the above, neighborhood
is always positively correlated with future arrests conditional on past arrests.) By Corollary 1, it is thus
better in this case to base predictions of future behavior solely on past arrests, excluding neighborhood,
as we see in Figure 2.
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